End-stage organ failure or tissue loss is one of the most devastating and costly problems in medicine.  Limitations associated with tissue donation such as tissue availability, donor site morbidity, and immune rejection has led investigators to develop strategies to engineer tissue for replacement. The creation of engineered musculoskeletal tissues will not only restore the function of complex tissues such as muscle, tendon, ligament, bone and nerve following traumatic injury, but can also be used as a model for studying developmental biology and tissue level pharmacology. Dr. Larkin directs a laboratory the Skeletal Tissue Engineering Laboratory (STEL) at the University of Michigan that has developed a scaffold-less method to engineer three-dimensional (3D) muscle, nerve conduit, tendon, bone and ligament constructs from primary, bone marrow stromal cells (BMSCs) and adipose stem cells (ASCs).  The research aims of STEL are to fabricate 3D musculoskeletal tissues, interface the tissues and evaluate the structural and histological characteristics, implant the tissues in vivo to expose them to the actual mechanical and biochemical environments of a hindlimb, evaluate alterations in the structural, functional and histological characteristics of the tissues in response to strain-shielded and unshielded mechanical environments, and utilize the engineered tissues for tissue repair and replacement.

Contact STEL Technologies
734-717-8877
lisa.larkin@steltechnologies.com
Lisa Larkin, CEO
Visit Website