Gene Therapies – A Global Sector Overview -- NYAS Workshop - 10 Oct 2019

Sector Overview

Janet Lambert, CEO, Alliance for Regenerative Medicine
About ARM

• **International advocacy organization**
 - Dedicated to realizing the promise of safe and effective regenerative medicines for patients around the world
 - Cell and gene therapy, tissue engineering

• **340+ members**
 - Small and large companies, non-profit research institutions, patient organizations, and other sector stakeholders
 - Across 25 countries

• **Priorities:**
 - Clear, predictable, and harmonized **regulatory** pathways
 - Enabling market access and value-based **reimbursement** policies
 - Addressing industrialization and **manufacturing** hurdles
 - Conducting key stakeholder outreach, **communication**, and education
 - Facilitating sustainable access to **capital**
Select ARM Members

<table>
<thead>
<tr>
<th>Gene Therapy</th>
<th>Cell Therapy</th>
<th>Tissue Engineering</th>
<th>Research Orgs</th>
<th>Foundations, NPOs, + Patient Orgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGTC</td>
<td>Adapimmune</td>
<td>Aspect Biosystems</td>
<td>Tulane University</td>
<td>Cell and Gene Therapy Catapult</td>
</tr>
<tr>
<td>Amicus Tx</td>
<td>Akron Biotech</td>
<td>AxoGen</td>
<td>Gates Center for RM</td>
<td>ISSCR</td>
</tr>
<tr>
<td>Atara Bio</td>
<td>Atara Bio</td>
<td>Avery Tx</td>
<td>Baylor College of Medicine</td>
<td>Missouri Cures</td>
</tr>
<tr>
<td>Audentes Tx</td>
<td>Athersys</td>
<td>Bone Tx</td>
<td>MSK</td>
<td>Fondazione Telethon</td>
</tr>
<tr>
<td>AVROBIO</td>
<td>Autolus</td>
<td>DiscGenics</td>
<td>UMass Med School</td>
<td>National Stem Cell Foundation</td>
</tr>
<tr>
<td>Axovant</td>
<td>BlueRock Tx</td>
<td>Mesoblast</td>
<td>City of Hope</td>
<td>The Michael J. Fox Foundation</td>
</tr>
<tr>
<td>BioMarin</td>
<td>CDI/Fujifilm</td>
<td>MiMedx Group</td>
<td>Ludwig Boltzmann Institute</td>
<td>American Association of Tissue Banks</td>
</tr>
<tr>
<td>Sanofi / Bioverativ</td>
<td>Gamida Cell</td>
<td>Miromatrix</td>
<td>UC Irvine</td>
<td>Be the Match Biotherapies</td>
</tr>
<tr>
<td>bluebird bio</td>
<td>GE Healthcare</td>
<td>Novadip Bio</td>
<td>Universidad de los Andes</td>
<td>BioBridge Global</td>
</tr>
<tr>
<td>Celgene</td>
<td>Cell Medica</td>
<td>Organovo</td>
<td>Abramson Cancer Center (UPenn)</td>
<td>New York Blood Center</td>
</tr>
<tr>
<td>Casebia</td>
<td>EMD Millipore</td>
<td>Orthocell</td>
<td>Sanford Stem Cell Clinical Center</td>
<td>GE2P2 Global Foundation</td>
</tr>
<tr>
<td>CRISPR Tx</td>
<td>Fate Tx</td>
<td>Pluristem Tx</td>
<td>Cornell University</td>
<td>AABB</td>
</tr>
<tr>
<td>Editas Medicine</td>
<td>Gamida Cell</td>
<td>PolarityTE</td>
<td>Institut Clayton de la Recherche</td>
<td>Fred Hutch Cancer Research Center</td>
</tr>
<tr>
<td>Flexion</td>
<td>GE Healthcare</td>
<td>Skingenix</td>
<td>Johns Hopkins Translational Tissue Engineering Center</td>
<td>National Disease Research Interchange</td>
</tr>
<tr>
<td>GSK</td>
<td>Gilead / Kite</td>
<td>StemBioSys</td>
<td>Northwestern University Comprehensive Transplant Center</td>
<td>Neural Stem Cell Institute</td>
</tr>
<tr>
<td>Homology</td>
<td>GSK</td>
<td>TERMIS - Americas</td>
<td>UCSD Stem Cell Program</td>
<td>Texas Heart Institute</td>
</tr>
<tr>
<td>Intellia Tx</td>
<td>Iovance</td>
<td>VERIGRAFT</td>
<td></td>
<td>Unite 2 Fight Paralysis</td>
</tr>
<tr>
<td>LogicBio</td>
<td>J&J</td>
<td>Videregen</td>
<td></td>
<td>Fraunhofer Institute</td>
</tr>
<tr>
<td>Novartis / AveXis</td>
<td>Kiadis Pharma</td>
<td></td>
<td></td>
<td>New York Stem Cell Foundation</td>
</tr>
<tr>
<td>Pfizer</td>
<td>Magenta Tx</td>
<td></td>
<td></td>
<td>GCT and Connected Health Initiative</td>
</tr>
<tr>
<td>Precision Bio</td>
<td>MolMed</td>
<td></td>
<td></td>
<td>FARAD</td>
</tr>
<tr>
<td>Orchard Tx</td>
<td>Mustang Bio</td>
<td></td>
<td></td>
<td>Gift of Life Marrow Registry</td>
</tr>
<tr>
<td>Oxford BioMedica</td>
<td>Novadip Bio</td>
<td></td>
<td></td>
<td>Nebraska Coalition for Lifesaving Cures</td>
</tr>
<tr>
<td>REGENXBIO</td>
<td>PCT/Hitachi</td>
<td></td>
<td></td>
<td>Alpha-1 Foundation</td>
</tr>
<tr>
<td>Sangamo Tx</td>
<td>ReNeuron Group</td>
<td></td>
<td></td>
<td>Global Genes</td>
</tr>
<tr>
<td>Sarepta</td>
<td>Takeda Pharma</td>
<td></td>
<td></td>
<td>Stop ALD Foundation</td>
</tr>
<tr>
<td>Spark Tx</td>
<td>Thermo Fisher</td>
<td></td>
<td></td>
<td>EveryLife Foundation</td>
</tr>
<tr>
<td>Ultragenyx</td>
<td>Tmunity Tx</td>
<td></td>
<td></td>
<td>Cleveland Clinic</td>
</tr>
<tr>
<td></td>
<td>ViaCyte</td>
<td></td>
<td></td>
<td>ESGCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASGCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fight Colorectal Cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>National Multiple Sclerosis Society</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EB Research Partnership</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevent Cancer Foundation</td>
</tr>
</tbody>
</table>
Regenerative Medicine Companies Worldwide, including Gene and Cell Therapies, and Tissue Engineering Therapeutic Developers

Current Global Sector Landscape

953+

521 North America

233 Europe & Israel

164 Asia

21 Oceania

13 South America

1 Africa

Source data provided by: informa
Current Global Sector Landscape

454+
Gene Therapy & Gene-based Medicine Companies Worldwide

249 North America

2 South America

106 Europe & Israel

91 Asia

6 Oceania
Australia, New Zealand, Marshall Islands

Source data provided by: informa
Current Global Sector Landscape

57+
Gene Therapy & Gene-based Medicine Companies Active in Gene Editing

35 North America

12 Europe & Israel

10 Asia

Source data provided by: informa
Major Therapeutic Platforms & Enabling Technologies

- **Viral vectors**: retroviruses, adenoviruses, herpes simplex, vaccinia, and adeno-associated virus (AAV)
- **Non-viral vectors**: nanoparticles, nanospheres, transposons, electroporation, and others
- **Genetically modified cell therapies**: chimeric antigen receptors (CAR) T cell therapies, T cell receptor (TCR) therapies, natural killer (NK) cell therapies, tumor infiltrating lymphocytes (TILs), marrow derived lymphocytes (MILs), gammadelta T cells, and dendritic vaccines.
- **Genome editing**: meganucleases, homing endonucleases; zinc finger nucleases (ZFNs); transcription activator-like effector-based nucleases (TALEN); nucleases such as Cas9 and Cas12a that derive from the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas); homologous recombination of adeno-associated virus (AAV)-derived sequences.
- **Next-gen expression constructs**: novel capsids; innovative regulatory elements, including synthetic promoters that enable specificity, strength, and improve capacity; inducible elements to regulate gene expression temporally or in response to external stimuli: molecular kill switches to improve safety; etc.
Clinical Environment
Patient Impact of Recently Approved Products

<table>
<thead>
<tr>
<th>Therapy Name</th>
<th>Product Developer</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kymriah</td>
<td>Novartis</td>
<td>• 40% of patients with R/R DLBCL treated experienced a complete response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 60% of patients with R/R B-Cell ALL treated experienced a complete response</td>
</tr>
<tr>
<td>Yescarta</td>
<td>Kite Pharma, a Gilead company</td>
<td>• 58% of patients with R/R B-Cell NHL treated experienced a complete response</td>
</tr>
<tr>
<td>LUXTURNA</td>
<td>Spark Therapeutics</td>
<td>• 55% of patients treated showed an improvement of 2+ light levels darker after treatment</td>
</tr>
<tr>
<td>Zolgensma</td>
<td>AveXis / Novartis</td>
<td>• 93% of patients SMA Type 1 treated were alive without permanent ventilation at 24 months post-treatment</td>
</tr>
<tr>
<td>Zynteglo</td>
<td>bluebird bio</td>
<td>• 75% of patients with TDT without β0/β0 genotype treated achieved transfusion independence</td>
</tr>
</tbody>
</table>
Select Anticipated Near-Term Approvals (Global)

Gene Therapy

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
<th>Condition</th>
<th>Approval Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolgensma</td>
<td>AveXis / Novartis</td>
<td>Spinal muscular atrophy type 1</td>
<td>Decision expected: mid 2019 (EU & Japan)</td>
</tr>
<tr>
<td>GT-AADC</td>
<td>PTC Therapeutics</td>
<td>AADC deficiency</td>
<td>Expects to file: late 2019 (US)</td>
</tr>
<tr>
<td>Zynteglo</td>
<td>bluebird bio</td>
<td>Beta thalasemia</td>
<td>Expects to file: 2019 (US)</td>
</tr>
<tr>
<td>Valrox</td>
<td>BioMarin</td>
<td>Hemophilia A</td>
<td>Expects to file: Q4 2019 (US & EU)</td>
</tr>
</tbody>
</table>

GS010 (GenSight Biologics)
- Leber hereditary optic neuropathy
- Expects to file: H2 2020 (US & EU)

AT132 (Audentes Therapeutics)
- X-linked myotubular myopathy
- Expects to file: H2 2020 (US)

GS010 (GenSight Biologics)
- Leber hereditary optic neuropathy
- Expects to file: H2 2020 (US & EU)

OTL-101 (Orchard Therapeutics)
- ADA-SCID
- Expects to file: 2020 (US)

P-BCMA-101 (Poseida Therapeutics)
- Multiple myeloma
- Expects to file: 2020 (US)

liso-cel (Celgene)
- Diffuse large B-cell lymphoma (DLBCL)
- Expects to file: Q4 2019 (US)

ide-cel (bluebird bio / Celgene)
- Multiple myeloma
- Expects to file: H2 2020 (US)
Regenerative Medicine Clinical Trials by Phase and Technology Type

Phase 1: 366 across all tech types and indications
- Gene Therapy: 117
- Gene-Modified Cell Therapy: 199
- Cell Therapy: 44
- Tissue Engineering: 6

Phase 2: 609 across all tech types and indications
- Gene Therapy: 227
- Gene-Modified Cell Therapy: 205
- Cell Therapy: 154
- Tissue Engineering: 23

Phase 3: 96 across all tech types and indications
- Gene Therapy: 32
- Gene-Modified Cell Therapy: 16
- Cell Therapy: 31
- Tissue Engineering: 17

Total Regenerative Medicine Clinical Trials: 1,071

Source data provided by: informa
Anticipated Approvals 2025

“We anticipate that by 2020 we will be receiving **more than 200 INDs per year**, building upon our total of more than 800 active cell-based or directly administered gene therapy INDs currently on file with the FDA. And by 2025, we predict that the FDA will be approving **10 to 20 cell and gene therapy products a year** based on an assessment of the current pipeline and the clinical success rates of these products.”

-- CBER Director Peter Marks, January 2019
• **78% (624)** of all gene therapy & gene-modified cell therapy clinical trials are in oncology, including leukemia, lymphoma, and cancers of the brain, breast, bladder, cervix, colon, esophagus, ovaries, pancreas, and others.

• **4% (31)** are in hematology, including hemophilia, beta thalassemia, sickle cell disease, Fanconi’s anemia, and others.

• **4% (30)** are in endocrine, metabolic, and genetic disorders, including mucopolysaccharidosis, ADA-SCID, phenylketonuria, and others.
There are currently 31 active, ongoing clinical trials involving gene editing

- 45% are Phase 1 and 55% are Phase 1/2.
- 85% are *ex vivo* and 15% are *in vivo*.
- The technologies used in these trials include:
 - CRISPR/cas9 (52%)
 - ZFN (29%)
 - TALEN (16%)
 - Other (6%)

Clinical Trials by Indication

<table>
<thead>
<tr>
<th>Indication</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oncology, 20*</td>
<td></td>
</tr>
<tr>
<td>Hematology, 5</td>
<td></td>
</tr>
<tr>
<td>Infectious Diseases, 3</td>
<td></td>
</tr>
<tr>
<td>Endocrine, Metabolic, & Genetic Disorders, 2</td>
<td></td>
</tr>
<tr>
<td>Ophthalmology, 1</td>
<td></td>
</tr>
</tbody>
</table>

All clinical trials active in oncology are in gene-edited cell therapies (CAR-Ts, TCRs)

Source data provided by: informa
Active Trials in Genome Editing Worldwide*

31

North America
- United States: 19
- Canada: 1

Europe
- UK: 6
- France: 2
- Germany: 2
- Belgium: 1
- Italy: 1
- Spain: 1

Asia
- China: 10
- Japan: 1

The country figures add up to 44 because 7 clinical trials have active clinical sites in multiple countries.
Capital Formation
Total Global Financings Year-to-Date
YTD 2019 financings calculated as of September 20, 2019

- **Total Global Financings**: $7.5B YTD 2019
- **Gene-Based Therapies**: $5.7B YTD 2019
- **Gene Editing**: $858M YTD 2019

Source data provided by: informa
Select Gene Therapy Corporate Partnerships & Public Financings
YTD 2019

Corporate Partnerships: (Upfront Payments)
• Vertex signs $175M upfront agreement with CRISPR Tx – June 6 *
• Neurocrine Bio and Voyager Tx sign $115M upfront agreement – January 29
• Janssen signs $100M upfront agreement with MeiraGTx – January 31
• Astellas signs $80M upfront agreement with Frequency Therapeutics – July 17
• Vivet Therapeutics and Pfizer enter into $51M upfront agreement – March 20

Private Placements & Venture Financings:
• AskBio secures $235M in financing – April 11
• Maze Tx raises $191M in venture funding – February 28
• Poseida raises $142M in Series C – April 22 *
• Beam Tx secures $135M in Series A – March 6 *
• Passage Bio raises $115.5M in Series A – February 15
• Nkarta raises $114M in Series B – September 4
• Passage Bio raises $110M in Series B – September 4
• Encoded Tx raises $104M in Series C – June 26
• Gracell Biotech raises $85M in Series B – February 25
• Adicet Bio raises $80M in Series B – October 3

Public Offerings: (IPOs & Follow-Ons)
• uniQure raises $225M in follow-on offering – September 4
• Fate Tx raises $173M in follow-on offering – September 18 *
• Sangamo raises $145M in follow-on offering – April 8 *
• Precision Bio raises $145M in IPO – April 1 *
• Homology raises $144M in follow-on offering – April 12 *
• AVROBIO raises $138M in follow-on offering – July 19
• Orchard Tx raises $128M in follow-on offering – June 3
• Prevail Tx raises $125M in IPO – June 24
• Autolus raises $115.9M in follow-on offering – April 15
• Krystal Bio raises $115M in follow-on offering – June 24

* Financings by companies active in gene editing marked with an asterisk
Policy & Advocacy
Gene Therapy Policy Issues

Regulatory Issues
CMC requirements; draft guidance; European repository of regulatory requirements; Hospital exemption

Market Access
Adapting value assessments to one time/durable/curative therapies; enabling payment over time and outcome based contracts

Clinical Trials
NIH ended duplicative review of gene therapy trials; GMO requirement harmonization; trial design

Gene Editing
ARM Published Therapeutic Developers Statement of Principles; WHO expert group; NAS
ARM Gene Editing Positions

- ARM has consistently supported the therapeutic use of somatic cell gene editing
 - Potential to provide important, perhaps life-saving, treatments for patients
 - Sole development focus of ARM members; operating with oversight of regulatory bodies
- ARM has consistently opposed gene editing of germline cells for the purpose of human implantation or in a clinical setting
- ARM positions on germline gene editing (from 2015) have been shared via press releases available at www.alliancerm.org/press-releases. Positions have also been shared with the U.S. Senate and the National Academies of Science.
The ARM GETF is comprised of companies actively developing gene editing therapies or associated platform technologies.

All ARM members sign a code of conduct as a condition of membership:
- A commitment to regulatory oversight to protect patient safety
- Agreement not to commercialize products in regions without well established regulations

In light of recent events, ARM’s GETF has developed a Therapeutic Developers’ Statement of Principles:
- Public statement of companies’ position on the ethical use of gene editing
- Contribute to the international dialogue
Therapeutic Developers’ Statement of Principles

• We endorse investigation of therapeutic applications of **somatic cell gene editing**, under the oversight of national or regional regulatory bodies

• We support the use of **gene editing standards** to facilitate the development of safe and effective therapies (e.g. the NIST Genome Editing Consortium)

• We support the continued **evolution of national and regional regulatory frameworks** governing the development of somatic cell gene editing technologies

• Unless and until ethical and potential safety questions with respect to germline gene editing are adequately addressed, **we do not support or condone germline gene editing in human clinical trials** or for human implantation

• We believe that these are international concerns and support discussion of therapeutic gene editing issues on a **global stage**
Therapeutic Developers’ Statement of Principles

Released 27 August, 2019

Signatories:

🌟 Audentes Therapeutics
🌟 bluebird bio
🌟 BlueRock Therapeutics
🌟 Caribou Biosciences
🌟 Casebia Therapeutics
🌟 CRISPR Therapeutics
🌟 Editas Medicine
🌟 Homology Medicines
🌟 Intellia Therapeutics
🌟 LogicBio Therapeutics
🌟 Pfizer Inc.
🌟 Precision Biosciences
🌟 Sangamo Therapeutics
🌟 Tmunity Therapeutics

The Statement of Principles remains open for additional ARM Member signatures
The full Statement is available at www.alliancerm.org
W.H.O. Opportunities

- Articulate a globally-relevant set of ethical norms for gene editing
- Work in partnership with the scientific community, journal editors, regulators, and others to promote ethical gene editing research
- Develop mechanisms for communities to identify and report unethical and inappropriate research
- Track and regularly report on global gene editing clinical developments and research – in collaboration with relevant scientific societies and other stakeholders
- Convene/Support an ongoing multi stakeholder international dialogue on germline gene editing
- Underscore the distinction between somatic and germline work
Considerations for Gene Editing Registries

• Clarity of purpose and primary use case
• Provide appropriate transparency without casting doubts on somatic cell gene editing
• Registry relationship to new or existing regulatory requirements
• Avoid duplication and inconsistency with existing registries
• Ensure registry makes clear whether the therapy/investigation is approved, subject of a current marketing application, under the auspices of a regulatory agency or under an approved IRB (with specifics)
• Ensure the registry is not used for promotion/validation of an inappropriate/unethical research or product development program
• Sufficient resources for effective screening, management
Overcoming Manufacturing Barriers

- Member workshop on comparability in cell & gene therapy development, with USP & global regulators
- *In Vivo* publication on manufacturing challenges in cell and gene therapy in June, and co-hosted a follow-up webinar in September
- Finalizing a comprehensive framework document -- A-Gene -- covering development, manufacture, regulatory submission, and lifecycle of gene therapies
 - Expected release in early 2020
 - Content is currently being drafted for A-Cell, a similar project focusing on cell therapies

A-Gene participants include:

- Adicet Bio
- AUDENTES
- AVROBIO
- BIOMARIN
- CATAPULT
- CardinalHealth
- Hitachi Chemical
- Lentigen
- PFIZER
- Skyland Analytics
- VCLS
- usp
This presentation will be available on our website and shared via Twitter at @alliancerm

Visit www.alliancerm.org to access additional resources, including:

- Quarterly sector data reports
- Upcoming near-term clinical trial milestones & data readouts
- Access to slides, graphics, and figures from ARM presentations
- Our weekly sector newsletter, a robust round-up of business, clinical, scientific, and policy news in the sector
- Commentary from experts in the field
Thank You!